\(\int \frac {(a d e+(c d^2+a e^2) x+c d e x^2)^3}{\sqrt {d+e x}} \, dx\) [1993]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [B] (verification not implemented)
   Giac [B] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 37, antiderivative size = 119 \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^3}{\sqrt {d+e x}} \, dx=-\frac {2 \left (c d^2-a e^2\right )^3 (d+e x)^{7/2}}{7 e^4}+\frac {2 c d \left (c d^2-a e^2\right )^2 (d+e x)^{9/2}}{3 e^4}-\frac {6 c^2 d^2 \left (c d^2-a e^2\right ) (d+e x)^{11/2}}{11 e^4}+\frac {2 c^3 d^3 (d+e x)^{13/2}}{13 e^4} \]

[Out]

-2/7*(-a*e^2+c*d^2)^3*(e*x+d)^(7/2)/e^4+2/3*c*d*(-a*e^2+c*d^2)^2*(e*x+d)^(9/2)/e^4-6/11*c^2*d^2*(-a*e^2+c*d^2)
*(e*x+d)^(11/2)/e^4+2/13*c^3*d^3*(e*x+d)^(13/2)/e^4

Rubi [A] (verified)

Time = 0.03 (sec) , antiderivative size = 119, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.054, Rules used = {640, 45} \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^3}{\sqrt {d+e x}} \, dx=-\frac {6 c^2 d^2 (d+e x)^{11/2} \left (c d^2-a e^2\right )}{11 e^4}+\frac {2 c d (d+e x)^{9/2} \left (c d^2-a e^2\right )^2}{3 e^4}-\frac {2 (d+e x)^{7/2} \left (c d^2-a e^2\right )^3}{7 e^4}+\frac {2 c^3 d^3 (d+e x)^{13/2}}{13 e^4} \]

[In]

Int[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^3/Sqrt[d + e*x],x]

[Out]

(-2*(c*d^2 - a*e^2)^3*(d + e*x)^(7/2))/(7*e^4) + (2*c*d*(c*d^2 - a*e^2)^2*(d + e*x)^(9/2))/(3*e^4) - (6*c^2*d^
2*(c*d^2 - a*e^2)*(d + e*x)^(11/2))/(11*e^4) + (2*c^3*d^3*(d + e*x)^(13/2))/(13*e^4)

Rule 45

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 640

Int[((d_) + (e_.)*(x_))^(m_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[(d + e*x)^(m + p)*(a
/d + (c/e)*x)^p, x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] &&
 IntegerQ[p]

Rubi steps \begin{align*} \text {integral}& = \int (a e+c d x)^3 (d+e x)^{5/2} \, dx \\ & = \int \left (\frac {\left (-c d^2+a e^2\right )^3 (d+e x)^{5/2}}{e^3}+\frac {3 c d \left (c d^2-a e^2\right )^2 (d+e x)^{7/2}}{e^3}-\frac {3 c^2 d^2 \left (c d^2-a e^2\right ) (d+e x)^{9/2}}{e^3}+\frac {c^3 d^3 (d+e x)^{11/2}}{e^3}\right ) \, dx \\ & = -\frac {2 \left (c d^2-a e^2\right )^3 (d+e x)^{7/2}}{7 e^4}+\frac {2 c d \left (c d^2-a e^2\right )^2 (d+e x)^{9/2}}{3 e^4}-\frac {6 c^2 d^2 \left (c d^2-a e^2\right ) (d+e x)^{11/2}}{11 e^4}+\frac {2 c^3 d^3 (d+e x)^{13/2}}{13 e^4} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.08 (sec) , antiderivative size = 111, normalized size of antiderivative = 0.93 \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^3}{\sqrt {d+e x}} \, dx=\frac {2 (d+e x)^{7/2} \left (429 a^3 e^6-143 a^2 c d e^4 (2 d-7 e x)+13 a c^2 d^2 e^2 \left (8 d^2-28 d e x+63 e^2 x^2\right )+c^3 d^3 \left (-16 d^3+56 d^2 e x-126 d e^2 x^2+231 e^3 x^3\right )\right )}{3003 e^4} \]

[In]

Integrate[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^3/Sqrt[d + e*x],x]

[Out]

(2*(d + e*x)^(7/2)*(429*a^3*e^6 - 143*a^2*c*d*e^4*(2*d - 7*e*x) + 13*a*c^2*d^2*e^2*(8*d^2 - 28*d*e*x + 63*e^2*
x^2) + c^3*d^3*(-16*d^3 + 56*d^2*e*x - 126*d*e^2*x^2 + 231*e^3*x^3)))/(3003*e^4)

Maple [A] (verified)

Time = 2.72 (sec) , antiderivative size = 97, normalized size of antiderivative = 0.82

method result size
derivativedivides \(\frac {\frac {2 c^{3} d^{3} \left (e x +d \right )^{\frac {13}{2}}}{13}+\frac {6 \left (e^{2} a -c \,d^{2}\right ) c^{2} d^{2} \left (e x +d \right )^{\frac {11}{2}}}{11}+\frac {2 \left (e^{2} a -c \,d^{2}\right )^{2} c d \left (e x +d \right )^{\frac {9}{2}}}{3}+\frac {2 \left (e^{2} a -c \,d^{2}\right )^{3} \left (e x +d \right )^{\frac {7}{2}}}{7}}{e^{4}}\) \(97\)
default \(\frac {\frac {2 c^{3} d^{3} \left (e x +d \right )^{\frac {13}{2}}}{13}+\frac {6 \left (e^{2} a -c \,d^{2}\right ) c^{2} d^{2} \left (e x +d \right )^{\frac {11}{2}}}{11}+\frac {2 \left (e^{2} a -c \,d^{2}\right )^{2} c d \left (e x +d \right )^{\frac {9}{2}}}{3}+\frac {2 \left (e^{2} a -c \,d^{2}\right )^{3} \left (e x +d \right )^{\frac {7}{2}}}{7}}{e^{4}}\) \(97\)
pseudoelliptic \(\frac {2 \left (e^{6} a^{3}+\frac {7 x \,a^{2} c d \,e^{5}}{3}-\frac {2 c \left (-\frac {63 c \,x^{2}}{22}+a \right ) d^{2} a \,e^{4}}{3}-\frac {28 x \,c^{2} d^{3} \left (-\frac {33 c \,x^{2}}{52}+a \right ) e^{3}}{33}+\frac {8 c^{2} d^{4} \left (-\frac {63 c \,x^{2}}{52}+a \right ) e^{2}}{33}+\frac {56 x \,c^{3} d^{5} e}{429}-\frac {16 c^{3} d^{6}}{429}\right ) \left (e x +d \right )^{\frac {7}{2}}}{7 e^{4}}\) \(107\)
gosper \(\frac {2 \left (e x +d \right )^{\frac {7}{2}} \left (231 x^{3} c^{3} d^{3} e^{3}+819 x^{2} a \,c^{2} d^{2} e^{4}-126 x^{2} c^{3} d^{4} e^{2}+1001 x \,a^{2} c d \,e^{5}-364 x a \,c^{2} d^{3} e^{3}+56 x \,c^{3} d^{5} e +429 e^{6} a^{3}-286 d^{2} e^{4} a^{2} c +104 d^{4} e^{2} c^{2} a -16 c^{3} d^{6}\right )}{3003 e^{4}}\) \(131\)
trager \(\frac {2 \left (231 c^{3} d^{3} e^{6} x^{6}+819 a \,c^{2} d^{2} e^{7} x^{5}+567 c^{3} d^{4} e^{5} x^{5}+1001 a^{2} c d \,e^{8} x^{4}+2093 a \,c^{2} d^{3} e^{6} x^{4}+371 c^{3} d^{5} e^{4} x^{4}+429 a^{3} e^{9} x^{3}+2717 a^{2} c \,d^{2} e^{7} x^{3}+1469 a \,c^{2} d^{4} e^{5} x^{3}+5 c^{3} d^{6} e^{3} x^{3}+1287 a^{3} d \,e^{8} x^{2}+2145 a^{2} c \,d^{3} e^{6} x^{2}+39 a \,c^{2} d^{5} e^{4} x^{2}-6 c^{3} d^{7} e^{2} x^{2}+1287 a^{3} d^{2} e^{7} x +143 a^{2} c \,d^{4} e^{5} x -52 a \,c^{2} d^{6} e^{3} x +8 c^{3} d^{8} e x +429 a^{3} d^{3} e^{6}-286 a^{2} c \,d^{5} e^{4}+104 a \,c^{2} d^{7} e^{2}-16 c^{3} d^{9}\right ) \sqrt {e x +d}}{3003 e^{4}}\) \(301\)
risch \(\frac {2 \left (231 c^{3} d^{3} e^{6} x^{6}+819 a \,c^{2} d^{2} e^{7} x^{5}+567 c^{3} d^{4} e^{5} x^{5}+1001 a^{2} c d \,e^{8} x^{4}+2093 a \,c^{2} d^{3} e^{6} x^{4}+371 c^{3} d^{5} e^{4} x^{4}+429 a^{3} e^{9} x^{3}+2717 a^{2} c \,d^{2} e^{7} x^{3}+1469 a \,c^{2} d^{4} e^{5} x^{3}+5 c^{3} d^{6} e^{3} x^{3}+1287 a^{3} d \,e^{8} x^{2}+2145 a^{2} c \,d^{3} e^{6} x^{2}+39 a \,c^{2} d^{5} e^{4} x^{2}-6 c^{3} d^{7} e^{2} x^{2}+1287 a^{3} d^{2} e^{7} x +143 a^{2} c \,d^{4} e^{5} x -52 a \,c^{2} d^{6} e^{3} x +8 c^{3} d^{8} e x +429 a^{3} d^{3} e^{6}-286 a^{2} c \,d^{5} e^{4}+104 a \,c^{2} d^{7} e^{2}-16 c^{3} d^{9}\right ) \sqrt {e x +d}}{3003 e^{4}}\) \(301\)

[In]

int((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^3/(e*x+d)^(1/2),x,method=_RETURNVERBOSE)

[Out]

2/e^4*(1/13*c^3*d^3*(e*x+d)^(13/2)+3/11*(a*e^2-c*d^2)*c^2*d^2*(e*x+d)^(11/2)+1/3*(a*e^2-c*d^2)^2*c*d*(e*x+d)^(
9/2)+1/7*(a*e^2-c*d^2)^3*(e*x+d)^(7/2))

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 283 vs. \(2 (103) = 206\).

Time = 0.42 (sec) , antiderivative size = 283, normalized size of antiderivative = 2.38 \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^3}{\sqrt {d+e x}} \, dx=\frac {2 \, {\left (231 \, c^{3} d^{3} e^{6} x^{6} - 16 \, c^{3} d^{9} + 104 \, a c^{2} d^{7} e^{2} - 286 \, a^{2} c d^{5} e^{4} + 429 \, a^{3} d^{3} e^{6} + 63 \, {\left (9 \, c^{3} d^{4} e^{5} + 13 \, a c^{2} d^{2} e^{7}\right )} x^{5} + 7 \, {\left (53 \, c^{3} d^{5} e^{4} + 299 \, a c^{2} d^{3} e^{6} + 143 \, a^{2} c d e^{8}\right )} x^{4} + {\left (5 \, c^{3} d^{6} e^{3} + 1469 \, a c^{2} d^{4} e^{5} + 2717 \, a^{2} c d^{2} e^{7} + 429 \, a^{3} e^{9}\right )} x^{3} - 3 \, {\left (2 \, c^{3} d^{7} e^{2} - 13 \, a c^{2} d^{5} e^{4} - 715 \, a^{2} c d^{3} e^{6} - 429 \, a^{3} d e^{8}\right )} x^{2} + {\left (8 \, c^{3} d^{8} e - 52 \, a c^{2} d^{6} e^{3} + 143 \, a^{2} c d^{4} e^{5} + 1287 \, a^{3} d^{2} e^{7}\right )} x\right )} \sqrt {e x + d}}{3003 \, e^{4}} \]

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^3/(e*x+d)^(1/2),x, algorithm="fricas")

[Out]

2/3003*(231*c^3*d^3*e^6*x^6 - 16*c^3*d^9 + 104*a*c^2*d^7*e^2 - 286*a^2*c*d^5*e^4 + 429*a^3*d^3*e^6 + 63*(9*c^3
*d^4*e^5 + 13*a*c^2*d^2*e^7)*x^5 + 7*(53*c^3*d^5*e^4 + 299*a*c^2*d^3*e^6 + 143*a^2*c*d*e^8)*x^4 + (5*c^3*d^6*e
^3 + 1469*a*c^2*d^4*e^5 + 2717*a^2*c*d^2*e^7 + 429*a^3*e^9)*x^3 - 3*(2*c^3*d^7*e^2 - 13*a*c^2*d^5*e^4 - 715*a^
2*c*d^3*e^6 - 429*a^3*d*e^8)*x^2 + (8*c^3*d^8*e - 52*a*c^2*d^6*e^3 + 143*a^2*c*d^4*e^5 + 1287*a^3*d^2*e^7)*x)*
sqrt(e*x + d)/e^4

Sympy [A] (verification not implemented)

Time = 1.06 (sec) , antiderivative size = 178, normalized size of antiderivative = 1.50 \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^3}{\sqrt {d+e x}} \, dx=\begin {cases} \frac {2 \left (\frac {c^{3} d^{3} \left (d + e x\right )^{\frac {13}{2}}}{13 e^{3}} + \frac {\left (d + e x\right )^{\frac {11}{2}} \cdot \left (3 a c^{2} d^{2} e^{2} - 3 c^{3} d^{4}\right )}{11 e^{3}} + \frac {\left (d + e x\right )^{\frac {9}{2}} \cdot \left (3 a^{2} c d e^{4} - 6 a c^{2} d^{3} e^{2} + 3 c^{3} d^{5}\right )}{9 e^{3}} + \frac {\left (d + e x\right )^{\frac {7}{2}} \left (a^{3} e^{6} - 3 a^{2} c d^{2} e^{4} + 3 a c^{2} d^{4} e^{2} - c^{3} d^{6}\right )}{7 e^{3}}\right )}{e} & \text {for}\: e \neq 0 \\\frac {c^{3} d^{\frac {11}{2}} x^{4}}{4} & \text {otherwise} \end {cases} \]

[In]

integrate((a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**3/(e*x+d)**(1/2),x)

[Out]

Piecewise((2*(c**3*d**3*(d + e*x)**(13/2)/(13*e**3) + (d + e*x)**(11/2)*(3*a*c**2*d**2*e**2 - 3*c**3*d**4)/(11
*e**3) + (d + e*x)**(9/2)*(3*a**2*c*d*e**4 - 6*a*c**2*d**3*e**2 + 3*c**3*d**5)/(9*e**3) + (d + e*x)**(7/2)*(a*
*3*e**6 - 3*a**2*c*d**2*e**4 + 3*a*c**2*d**4*e**2 - c**3*d**6)/(7*e**3))/e, Ne(e, 0)), (c**3*d**(11/2)*x**4/4,
 True))

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 611 vs. \(2 (103) = 206\).

Time = 0.21 (sec) , antiderivative size = 611, normalized size of antiderivative = 5.13 \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^3}{\sqrt {d+e x}} \, dx=\frac {2 \, {\left (15015 \, \sqrt {e x + d} a^{3} d^{3} e^{3} + 3003 \, {\left (\frac {{\left (3 \, {\left (e x + d\right )}^{\frac {5}{2}} - 10 \, {\left (e x + d\right )}^{\frac {3}{2}} d + 15 \, \sqrt {e x + d} d^{2}\right )} c d}{e} + \frac {5 \, {\left (c d^{2} + a e^{2}\right )} {\left ({\left (e x + d\right )}^{\frac {3}{2}} - 3 \, \sqrt {e x + d} d\right )}}{e}\right )} a^{2} d^{2} e^{2} + \frac {5 \, {\left (231 \, {\left (e x + d\right )}^{\frac {13}{2}} - 1638 \, {\left (e x + d\right )}^{\frac {11}{2}} d + 5005 \, {\left (e x + d\right )}^{\frac {9}{2}} d^{2} - 8580 \, {\left (e x + d\right )}^{\frac {7}{2}} d^{3} + 9009 \, {\left (e x + d\right )}^{\frac {5}{2}} d^{4} - 6006 \, {\left (e x + d\right )}^{\frac {3}{2}} d^{5} + 3003 \, \sqrt {e x + d} d^{6}\right )} c^{3} d^{3}}{e^{3}} + 143 \, {\left (\frac {{\left (35 \, {\left (e x + d\right )}^{\frac {9}{2}} - 180 \, {\left (e x + d\right )}^{\frac {7}{2}} d + 378 \, {\left (e x + d\right )}^{\frac {5}{2}} d^{2} - 420 \, {\left (e x + d\right )}^{\frac {3}{2}} d^{3} + 315 \, \sqrt {e x + d} d^{4}\right )} c^{2} d^{2}}{e^{2}} + \frac {18 \, {\left (5 \, {\left (e x + d\right )}^{\frac {7}{2}} - 21 \, {\left (e x + d\right )}^{\frac {5}{2}} d + 35 \, {\left (e x + d\right )}^{\frac {3}{2}} d^{2} - 35 \, \sqrt {e x + d} d^{3}\right )} {\left (c d^{2} + a e^{2}\right )} c d}{e^{2}} + \frac {21 \, {\left (c d^{2} + a e^{2}\right )}^{2} {\left (3 \, {\left (e x + d\right )}^{\frac {5}{2}} - 10 \, {\left (e x + d\right )}^{\frac {3}{2}} d + 15 \, \sqrt {e x + d} d^{2}\right )}}{e^{2}}\right )} a d e + \frac {65 \, {\left (63 \, {\left (e x + d\right )}^{\frac {11}{2}} - 385 \, {\left (e x + d\right )}^{\frac {9}{2}} d + 990 \, {\left (e x + d\right )}^{\frac {7}{2}} d^{2} - 1386 \, {\left (e x + d\right )}^{\frac {5}{2}} d^{3} + 1155 \, {\left (e x + d\right )}^{\frac {3}{2}} d^{4} - 693 \, \sqrt {e x + d} d^{5}\right )} {\left (c d^{2} + a e^{2}\right )} c^{2} d^{2}}{e^{3}} + \frac {143 \, {\left (35 \, {\left (e x + d\right )}^{\frac {9}{2}} - 180 \, {\left (e x + d\right )}^{\frac {7}{2}} d + 378 \, {\left (e x + d\right )}^{\frac {5}{2}} d^{2} - 420 \, {\left (e x + d\right )}^{\frac {3}{2}} d^{3} + 315 \, \sqrt {e x + d} d^{4}\right )} {\left (c d^{2} + a e^{2}\right )}^{2} c d}{e^{3}} + \frac {429 \, {\left (5 \, {\left (e x + d\right )}^{\frac {7}{2}} - 21 \, {\left (e x + d\right )}^{\frac {5}{2}} d + 35 \, {\left (e x + d\right )}^{\frac {3}{2}} d^{2} - 35 \, \sqrt {e x + d} d^{3}\right )} {\left (c d^{2} + a e^{2}\right )}^{3}}{e^{3}}\right )}}{15015 \, e} \]

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^3/(e*x+d)^(1/2),x, algorithm="maxima")

[Out]

2/15015*(15015*sqrt(e*x + d)*a^3*d^3*e^3 + 3003*((3*(e*x + d)^(5/2) - 10*(e*x + d)^(3/2)*d + 15*sqrt(e*x + d)*
d^2)*c*d/e + 5*(c*d^2 + a*e^2)*((e*x + d)^(3/2) - 3*sqrt(e*x + d)*d)/e)*a^2*d^2*e^2 + 5*(231*(e*x + d)^(13/2)
- 1638*(e*x + d)^(11/2)*d + 5005*(e*x + d)^(9/2)*d^2 - 8580*(e*x + d)^(7/2)*d^3 + 9009*(e*x + d)^(5/2)*d^4 - 6
006*(e*x + d)^(3/2)*d^5 + 3003*sqrt(e*x + d)*d^6)*c^3*d^3/e^3 + 143*((35*(e*x + d)^(9/2) - 180*(e*x + d)^(7/2)
*d + 378*(e*x + d)^(5/2)*d^2 - 420*(e*x + d)^(3/2)*d^3 + 315*sqrt(e*x + d)*d^4)*c^2*d^2/e^2 + 18*(5*(e*x + d)^
(7/2) - 21*(e*x + d)^(5/2)*d + 35*(e*x + d)^(3/2)*d^2 - 35*sqrt(e*x + d)*d^3)*(c*d^2 + a*e^2)*c*d/e^2 + 21*(c*
d^2 + a*e^2)^2*(3*(e*x + d)^(5/2) - 10*(e*x + d)^(3/2)*d + 15*sqrt(e*x + d)*d^2)/e^2)*a*d*e + 65*(63*(e*x + d)
^(11/2) - 385*(e*x + d)^(9/2)*d + 990*(e*x + d)^(7/2)*d^2 - 1386*(e*x + d)^(5/2)*d^3 + 1155*(e*x + d)^(3/2)*d^
4 - 693*sqrt(e*x + d)*d^5)*(c*d^2 + a*e^2)*c^2*d^2/e^3 + 143*(35*(e*x + d)^(9/2) - 180*(e*x + d)^(7/2)*d + 378
*(e*x + d)^(5/2)*d^2 - 420*(e*x + d)^(3/2)*d^3 + 315*sqrt(e*x + d)*d^4)*(c*d^2 + a*e^2)^2*c*d/e^3 + 429*(5*(e*
x + d)^(7/2) - 21*(e*x + d)^(5/2)*d + 35*(e*x + d)^(3/2)*d^2 - 35*sqrt(e*x + d)*d^3)*(c*d^2 + a*e^2)^3/e^3)/e

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 874 vs. \(2 (103) = 206\).

Time = 0.31 (sec) , antiderivative size = 874, normalized size of antiderivative = 7.34 \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^3}{\sqrt {d+e x}} \, dx=\text {Too large to display} \]

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^3/(e*x+d)^(1/2),x, algorithm="giac")

[Out]

2/15015*(15015*sqrt(e*x + d)*a^3*d^3*e^3 + 15015*((e*x + d)^(3/2) - 3*sqrt(e*x + d)*d)*a^2*c*d^4*e + 15015*((e
*x + d)^(3/2) - 3*sqrt(e*x + d)*d)*a^3*d^2*e^3 + 3003*(3*(e*x + d)^(5/2) - 10*(e*x + d)^(3/2)*d + 15*sqrt(e*x
+ d)*d^2)*a*c^2*d^5/e + 9009*(3*(e*x + d)^(5/2) - 10*(e*x + d)^(3/2)*d + 15*sqrt(e*x + d)*d^2)*a^2*c*d^3*e + 3
003*(3*(e*x + d)^(5/2) - 10*(e*x + d)^(3/2)*d + 15*sqrt(e*x + d)*d^2)*a^3*d*e^3 + 429*(5*(e*x + d)^(7/2) - 21*
(e*x + d)^(5/2)*d + 35*(e*x + d)^(3/2)*d^2 - 35*sqrt(e*x + d)*d^3)*c^3*d^6/e^3 + 3861*(5*(e*x + d)^(7/2) - 21*
(e*x + d)^(5/2)*d + 35*(e*x + d)^(3/2)*d^2 - 35*sqrt(e*x + d)*d^3)*a*c^2*d^4/e + 3861*(5*(e*x + d)^(7/2) - 21*
(e*x + d)^(5/2)*d + 35*(e*x + d)^(3/2)*d^2 - 35*sqrt(e*x + d)*d^3)*a^2*c*d^2*e + 429*(5*(e*x + d)^(7/2) - 21*(
e*x + d)^(5/2)*d + 35*(e*x + d)^(3/2)*d^2 - 35*sqrt(e*x + d)*d^3)*a^3*e^3 + 143*(35*(e*x + d)^(9/2) - 180*(e*x
 + d)^(7/2)*d + 378*(e*x + d)^(5/2)*d^2 - 420*(e*x + d)^(3/2)*d^3 + 315*sqrt(e*x + d)*d^4)*c^3*d^5/e^3 + 429*(
35*(e*x + d)^(9/2) - 180*(e*x + d)^(7/2)*d + 378*(e*x + d)^(5/2)*d^2 - 420*(e*x + d)^(3/2)*d^3 + 315*sqrt(e*x
+ d)*d^4)*a*c^2*d^3/e + 143*(35*(e*x + d)^(9/2) - 180*(e*x + d)^(7/2)*d + 378*(e*x + d)^(5/2)*d^2 - 420*(e*x +
 d)^(3/2)*d^3 + 315*sqrt(e*x + d)*d^4)*a^2*c*d*e + 65*(63*(e*x + d)^(11/2) - 385*(e*x + d)^(9/2)*d + 990*(e*x
+ d)^(7/2)*d^2 - 1386*(e*x + d)^(5/2)*d^3 + 1155*(e*x + d)^(3/2)*d^4 - 693*sqrt(e*x + d)*d^5)*c^3*d^4/e^3 + 65
*(63*(e*x + d)^(11/2) - 385*(e*x + d)^(9/2)*d + 990*(e*x + d)^(7/2)*d^2 - 1386*(e*x + d)^(5/2)*d^3 + 1155*(e*x
 + d)^(3/2)*d^4 - 693*sqrt(e*x + d)*d^5)*a*c^2*d^2/e + 5*(231*(e*x + d)^(13/2) - 1638*(e*x + d)^(11/2)*d + 500
5*(e*x + d)^(9/2)*d^2 - 8580*(e*x + d)^(7/2)*d^3 + 9009*(e*x + d)^(5/2)*d^4 - 6006*(e*x + d)^(3/2)*d^5 + 3003*
sqrt(e*x + d)*d^6)*c^3*d^3/e^3)/e

Mupad [B] (verification not implemented)

Time = 0.07 (sec) , antiderivative size = 106, normalized size of antiderivative = 0.89 \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^3}{\sqrt {d+e x}} \, dx=\frac {2\,{\left (a\,e^2-c\,d^2\right )}^3\,{\left (d+e\,x\right )}^{7/2}}{7\,e^4}-\frac {\left (6\,c^3\,d^4-6\,a\,c^2\,d^2\,e^2\right )\,{\left (d+e\,x\right )}^{11/2}}{11\,e^4}+\frac {2\,c^3\,d^3\,{\left (d+e\,x\right )}^{13/2}}{13\,e^4}+\frac {2\,c\,d\,{\left (a\,e^2-c\,d^2\right )}^2\,{\left (d+e\,x\right )}^{9/2}}{3\,e^4} \]

[In]

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^3/(d + e*x)^(1/2),x)

[Out]

(2*(a*e^2 - c*d^2)^3*(d + e*x)^(7/2))/(7*e^4) - ((6*c^3*d^4 - 6*a*c^2*d^2*e^2)*(d + e*x)^(11/2))/(11*e^4) + (2
*c^3*d^3*(d + e*x)^(13/2))/(13*e^4) + (2*c*d*(a*e^2 - c*d^2)^2*(d + e*x)^(9/2))/(3*e^4)